Abstract
The instability has been the largest barrier of the high performance axial compressor in the past decades. Stall inception, which determines the route and the characteristics of instability evolution, has been extensively focused on. A new stall inception, “partial surge”, is discovered in the recent experiments. In this paper full-annulus transient simulations are performed to study the origin of partial surge initiated inception and explain the aerodynamic mechanism. The simulations show that the stall inception firstly occurs at the stator hub region, and then transfers to the rotor tip region. The compressor finally stalled by the tip region rotating stall. The stall evolution is in accord with the experiments. The stall evolution can be divided into three phases. In the first phase, the stator corner separation gradually merged with the adjacent passages, producing an annulus stall cell at the stator hub region. In the second phase, the total pressure rise of hub region emerges rapid decline due to the fast expansion of the annulus stall cell, but the tip region maintains its pressure rise. In the third phase, a new rotating stall cell appears at the rotor tip region, leading to the onset of fast drop of the tip region pressure rise. The stall cells transfer from hub region to the tip region is caused by two factors, the blockage of the hub region which transfers more load to the tip region, and the separation fluid fluctuations in stator domain which increase the circumferential non-uniformity in the rotor domain. High load and non-uniformity at the rotor tip region induce the final rotating stall.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.