Abstract

Ultrasonic attenuation coefficient is firstly calculated utilizing the finite difference time domain method based on a novel 2-D RVM for carbon fiber reinforced plastic (CFRP) composite materials. The results show that the void morphology has detrimental effect on ultrasonic attenuation. Even at the fixed porosity, ultrasonic attenuation coefficient fluctuates due to the randomness of void morphology in CFRP composite materials. This work significantly helps to understand ultrasonic scattering mechanism of voids and formulation of CFRP composite material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call