Abstract

The effect of cylindrical obstacles and the porosity in between them along the path of a converging cylindrical shock is studied through numerical simulations. An initially cylindrical converging shock wave is perturbed by cylindrical obstacles placed radially in its path. High pressures and temperatures are achieved as the shock wave is focused. Results show that the shape of the shock wave close to the point of convergence as well as the porosity and type of shock wave reflection the converging shock undergoes influence the peak values. Various configurations of the obstacle size and number are considered. The Guderley constant for each case is compared with previous reported experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call