Abstract

Numerical simulations of turbulent flows in a stirred dead-end membrane bioreactor are performed by using the RNG k - e model based on the finite volume method with the software Fluent. Comparisons of numerical and experimental results confirm the reliability and the feasibility of the constructed model. The flow structures such as the wake flows and the circulation loops in the stirred flows are well simulated. An increase of stirring speed is proposed to minimize the low velocity region. The single vane stirrer is found to be beneficial for biological separations. Results suggest that the increase of the vane number can enhance the mixing effect in the flow domains. However, a circular disk stirrer goes against

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.