Abstract

The existence of a TPG can generate a relatively high pressure gradient in the process of fluid flow in porous media in low-permeable reservoirs, and neglecting the QPGTs in the governing equations, by assuming a small pressure gradient for such a problem, can cause a significant error in predicting the formation pressure. Based on these concerns, in consideration of the QPGT, a moving boundary model of radial flow in low-permeable reservoirs with the TPG for the case of a constant flow rate at the inner boundary is constructed. Due to strong nonlinearity of the mathematical model, a numerical method is presented: the system of partial differential equations for the moving boundary problem is first transformed equivalently into a closed system of partial differential equations with fixed boundary conditions by a spatial coordinate transformation method; and then a stable, fully implicit finite difference method is used to obtain its numerical solution. Numerical result analysis shows that the mathematical models of radial flow in low-permeable reservoirs with TPG must take the QPGT into account in their governing equations, which is more important than those of Darcy’s flow; the sensitive effects of the QPGT for the radial flow model do not change with an increase of the dimensionless TPG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.