Abstract
This work is to investigate solid-liquid flows inside entire passage of a large Francis turbine unit and a modified algebraic model is proposed to take the solid-phase turbulent viscosity into consideration based on realizable turbulence model for the liquid phase and further development of the commercial CFD software. The energy conversion between the pressure and velocity, and the sedimentation distribution characteristics around all the hydraulic parts are simulated. The calculated velocity and sedimentation concentration distributions inside the runner are not uniform due to the effect of the centrifugal and Coriolis force. In addition, the calculated eccentric vortex rope in the draft tube causes vortex cavitation and vibration to the turbine unit, which leads to the eccentric sedimentation distribution. The simulation results (i.e., the mixture pressure, velocity and sedimentation distributions) are in good agreement with the natural rule, suggesting that the simulation strategies are capable to handle two-phase flows over complex geometries. The computational results can provide the useful information for hydraulic turbine designs. Future work will focus on the optimizations of hydraulic impeller designs using simulated results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.