Abstract

Validated by wind tunnel data, this study numerically investigates the integrated impacts of wind and thermal buoyancy on urban turbulence, ventilation and pollutant dispersion in full-scale 2D deep street canyons (aspect ratio AR = H/W = 3 and 5, W = 24 m). Isothermal urban airflows for such deep street canyons can be Reynolds-number-independent when reference Reynolds number (Re) exceeds the critical Re (Rec~106,107 when AR = 3, 5), i.e. AR = 5 experiences two main vortices and one-order smaller NEV* (~10−3, the normalized net escape velocity) than AR = 3 with a single main vortex (NEV*~10−2).With sufficiently large Re (Re > Rec) and the same air-wall temperature difference (Ri = 2.62, 4.36 when AR = 3, 5), four uniform wall heating patterns were considered, including leeward-wall heating (L-H), windward-wall heating (W–H), ground heating (G-H), and all-wall heating (A-H). Various indicators were adopted to evaluate street ventilation and pollutant dilution capacity (e.g. age of air (τ,s), NEV*, pollutant transport rates (PTR)). Full-scale wall heating produces a strong upward near-wall buoyancy force, which significantly influences flow patterns and improves street ventilation for most cases. When AR = 3, L-H strengthens the single-vortex airflow. When AR = 5, L-H converts the isothermal double vortices into a single-clockwise vortex. For both ARs, W–H reverses the main clockwise vortex to an enhanced counterclockwise one, moreover G-H and A-H cause a more complicated multi-vortex pattern than isothermal cases. Overall, when AR = 3, L-H and W–H increase NEV* by 68% and 40% than the isothermal case. When AR = 5, four wall heating patterns all raise NEV* considerably (by 150%–556%). For both ARs, the L-H, W–H and A-H amplify the contribution of mean flows on removing pollutants but reduce that by turbulent diffusion compared with isothermal cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call