Abstract

A numerical study has been conducted on the internal pressure distribution of a ventilated supercavity generated from a backward facing cavitator under different air entrainment coefficients, Froude numbers, and blockage ratios. An Eulerian multiphase model with a free surface model is employed and validated by the experiments conducted at St. Anthony Falls Laboratory of the University of Minnesota. The results show that the internal pressure in the major portion of the supercavity is primarily governed by the hydrostatic pressure of water, while a steep adverse pressure gradient occurs at the closure region. Increasing the air entrainment coefficient does not largely change the pressure distribution, while the cavity tail extends longer and consequently the pressure gradient near the closure decreases. At smaller Froude number, there is a more pronounced gravitational effect on the supercavity with increasing uplift of the lower surface of the cavity and a decreasing uniformity of the pressure distribution in the supercavity. With the increase of blockage ratio, the overall pressure within the supercavity decreases as well as the pressure gradient in the main portion of the supercavity. The current study shows that the assumption of uniform pressure distribution in ventilated supercavities is not always valid, especially at low Fr. However, an alternative definition of cavitation number in such cases remains to be defined and experimentally ascertained in future investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.