Abstract

This article describes a strategy of active flow control for lift force reduction of circular cylinder subjected to uniform flow at low Reynolds numbers. The flow control is realized by rotationally oscillating the circular cylinder about its axis with ω(t)=−λCL(t), where ω(t) is the dimensionless angular speed of rotation cylinder, λ is the control parameter and CL(t) is the feedback signal of lift coefficient. The study focuses on seeking optimum λ for the low Reynolds numbers of 60, 80, 100, 150, and 200. The effectiveness of the proposed flow control in suppressing lift force is examined comprehensively by a numerical model based on the finite element solution of two-dimensional Navier–Stokes equations. The dependence of lift reduction on the control parameter λ is investigated. The threshold of λ, denoted by λc, is identified for the Reynolds numbers considered in this work. The numerical results show that the present active rotary oscillation of circular cylinder is able to reduce the amplitude of lift force significantly as long as λ≤λc, at least 50% for the laminar flow regime. Meanwhile, the present active flow control does not result in the undesirable increase in the drag force. The Strouhal number is observed to decrease slightly with the increase of λ. As for a specific Reynolds number, the larger λ gives rise to the larger amount of lift reduction. The lift reduction reaches the maximum at λ=λc. The mechanism behind the present lift reduction method is revealed by comparing the flow patterns and pressure distributions near the active rotationally oscillating circular cylinder and the stationary circular cylinder. It is found that the critical value λc generally increases with Reynolds number. Two types of lift shift are observed in the numerical results for the cases with λ>λc. The first is characterized by the regular fluctuation of lift coefficient but with nonzero mean value, while the second is associated with the sustaining increase of lift coefficient. The phenomenon of lift shift is found to be related closely to the evolution of vortex pattern in the near wake of circular cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.