Abstract

The treatment of dense non-aqueous phase liquid (DNAPL) source zones is challenging, particularly in heterogeneous media. Thermal conductive heating (TCH) has the potential to treat DNAPL source zones for its ability to enhance mass transfer. This study uses numerical modeling combined with Monte Carlo simulation to examine the influence of heterogeneity of the permeability field on the DNAPL distribution and TCH remediation. It is found that the longer horizontal correlation length of high-permeable clay lens would contribute to accelerate multiphase convection and then heat conduction in horizontal direction. The presence of DNAPL (both in NAPL phase and dissolved), pressure, and permeability are all contributory factors to phase change. Realizations with shorter horizontal correlation lengths always have a larger vertical spreading of DNAPL. As a shallow vapor extraction well was applied in this study, higher TCE removal rate can be obtained in the realizations with a shorter horizontal correlation length when NAPL phase of TCE is existed in the domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call