Abstract

This article reports interfacial electro-thermo-chemical-hydrodynamics of binary fluids with contrasting viscosity, thermal conductivity, and electrical conductivity of fluids under AC electrokinetics, called alternating current electrothermal (ACET) mechanism, over wetted substrates. The interfacial kinetics of the two phases are modulated by the coupled influence of electrothermal, viscous, and capillary forces. Numerical investigations of contact line dynamics reveal that at low viscosity of displaced fluid, viscous drag force significantly reduces leading to faster progression of the contact line. Larger viscous drag force at higher viscosity of the displaced fluid resists the interface motion to travel along the capillary. ACET forces are the direct consequences of the thermal and electric fields. For low thermal conductivity of the displaced fluid, the temperature gradient becomes much stronger leading to higher ACET forces and contact line velocity. Below a threshold limit of thermal conductivity, stronger electrothermal forces cause misbalance between contact line velocity and bulk fluid velocity, which, in turn, trigger an interesting phenomena of interface breaking. Mismatch in electrical conductivity generates electrical stresses across the interface that deforms the interface profile and causes boosting impact across the interface leading to an increase in contact line velocity. The net force across the interface changes the direction depending on the deviation of electrical conductivity ratio from unity. Finally, we observe that larger channel height and wider electrode spacing decrease the net force on the bulk fluid and contact line velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.