Abstract
Abstract This paper begins with a numerical study based on earlier experiments of nonlinear vibro-ultrasonic behavior of a composite laminate with a delamination defect upon sinusoidal linear sweep signal excitation. A methodology to model laminates with cross-ply layup is presented which can be extended to any layup if desired. In comparison to experiments where it is challenging to visualize the fine details of vibrations, simulations make it easier to visualize and help in optimizing the defect probing methods. The paper goes on to discuss with the help of numerical results that a separation gap between the delamination surfaces occurs to be a common cause for the failure of nonlinear vibro-ultrasonic methods to detect delamination defects. This constraint can often be overcome with application of higher excitation amplitudes as has been demonstrated in several experimental works. However, in this study, a new approach named surface vibration comparison method to probe delamination defects in the absence of contact acoustic nonlinearity is proposed as a proof-of-concept. The technique is then evaluated for detection of weak kissing bond defects in composite beam specimens. Both the experimental and simulation results show potential of the method as damage detection technique in thin composite structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.