Abstract

The electronic industry has been working for decades to improve the cooling efficiency of heat sinks by creating more advanced, efficient cooling technologies. However, heat dissipation remains the major problem in this highly competitive sector. Plate-fin heat sinks with and without fillet profiles were investigated and two new proposed designs for plate-fin heat sinks with half-round pins attached to the fin were developed in this study. Numerical analysis was performed using ANSYS FLUENT R21 to evaluate the thermal performance of the proposed designs. For the element optimization, the grid independency test was performed to obtain the optimal number of elements. A constant heat flux of 18.750 kW/m2 was applied at the bottom plate of heat sinks as the input parameter and two different flow directions e.g., impinging flow and parallel flow at various mass flow rate was also applied to study the base temperature, thermal resistance and Nusselt number of these designs. The study has shown that plate-fin heat sinks with fillet profile and corrugated half-round pins (PFHS 4) subject to parallel flow and plate-fin heat sinks with fillet profile and symmetrical half-round pins (PFHS 3) subject to impinging flow exhibit better thermal performance over other configurations. Hence, these design configurations have a potential to be applied in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call