Abstract
Abstract Heat pipes are passive heat transfer systems and serve as an effective thermal management solution for electronic devices. The adaptability of heat pipes makes these suited for a wide application range, especially in the field of electronic thermal management. The current study highlights the transient numerical analysis of wickless heat pipes (thermosyphons) for the thermal management of electronic devices. The thermal performance of the thermosyphon is analyzed using both copper oxide (CuO) and aluminum oxide (Al2O3) nanofluids with their concentrations at 1% and 5%. Deionized (DI) water is employed as a reference case for comparison. The study is carried out for variable heat inputs to the thermosyphon ranging 10–50 W for a time interval of 30 s. The idea is to analyze the effect of the evaporator heat input and the nanoparticles concentration on the temperature, heat transfer coefficient, thermal resistance, and effective thermal conductivity of the heat pipe. The results indicate that CuO nanoparticles at a 5% concentration lead to a maximum thermal resistance reduction of 4.31% at 50 W, while alumina nanoparticles at the same concentration lead to a more substantial reduction of 6.66% at the same heat load. The evaporator temperature varies between 377.52 K to 374.99 K using deionized water, and 376.95 K to 374.29 K using CuO nanofluid (at 1% concentration). The heat pipe's evaporator attains its highest convective heat transfer coefficient (437.91 W/m2K) by using alumina nanofluid with 1% nanoparticle concentration at 50 W. Moreover, the effective thermal conductivity of the heat pipe is enhanced by 5% and 7% for copper oxide and aluminum oxide nanofluids (with 5% concentration), respectively, at 50 W. Thus, the nanofluids play a significant role in improving the efficiency and reliability of electronic components. These findings demonstrate the potential of using the nanofluids in thermosyphons to enhance their thermal performance in electronic cooling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.