Abstract

As a typical fluid–structure interaction (FSI) problem, water entry involves violent fluid flows and changing free surfaces, which presents great challenges for numerical modeling. Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that has natural advantages in modeling free surfaces and moving interfaces. However, SPH is computationally expensive due to the search of particle–particle interactions, and it causes great difficulties for performing large-scale simulations of 3D FSI problems. In this work, we present an accelerated SPH framework based on the Graphics Processing Unit (GPU) techniques to study water entry problems. The multi-threading programmed by Compute Unified Device Architecture (CUDA) is applied to enhance the computational performance in terms of efficiency and scale. Compared to the Single-CPU-based strategy, the newly presented GPU-accelerated SPH method is computationally more efficient with a speedup over hundreds times and enables a larger memory available for large-scale simulations of around ten million particles for three-dimensional cases. With the GPU-accelerated SPH method, the 3D water entry of a circular cylinder is investigated with some kinematic and dynamic characteristics explained. The results demonstrate that the rotational characteristic of a 3D cylinder in water entry is related to the dimensionless number γ defined as the ratio of the initial inclination angle to the initial velocity angle. The rotation of a cylinder changes from anticlockwise to clockwise with the increase in γ. A transition value of γ exists between the anticlockwise to clockwise rotation, which focuses on the range from 1.0 to 6.0. Meanwhile, the water entry of a 3D circular cylinder leads to a violent impact on the bottom of the cylinder, which causes a peak value of pressure being a maximum value at the early stage of the water entry. It is also indicated that the selection of the initial inclination angle has a great effect on the maximum pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call