Abstract

Numerical simulations of the wind flow around isolated stockpiles of bulk material are performed to assess the emission potential (P) of particulate matter (PM) from the pile surfaces exposed to wind erosion (i.e., industrial wind erosion). The analysis is focused on two metal sulphides (lead and zinc sulphides), which are typically stored in the open yards of industrial plants that operate in the commodity sector for the production of non-ferrous metals. The EPA methodology is applied to the numerical simulated flow fields to quantify the effect of the wind stress over the erodible surfaces of the two ores. Two alternative open bay geometries and different volumes of material stocked within the enclosing walls are considered. Moreover, the protective effect of the walls is assessed by comparing the same pile configurations without walls. This is found to be highly dependent on the wind direction, as well as to the pile configuration. A methodology that can be easily customized to specific industrial sites is proposed to define the best storage configuration for PM emission prevention and control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call