Abstract

Floating breakwaters have better performance than fixed breakwaters in deep water conditions owing to their higher durability and lower cost. To evaluate the hydrodynamics of a floating breakwater system, a coupling model between smoothed particle hydrodynamics and a multisegmented quasi-Static method is developed. The free-floating and the moored cases are firstly employed as benchmarks to validate the accuracy and stability of the proposed numerical procedure. The coupling model is then utilized to investigate the wave-attenuating performance of a novel configuration of floating breakwater under different environmental conditions. It is demonstrated that the induced response and the tension characteristics are both in good agreement with experimental results, which means that the developed coupling model is capable of predicting the hydrodynamics of the floating breakwater system. Moreover, it is also suggested that the newly-proposed configuration shows more satisfactory wave-attenuating performance than the classical type by inducing more complex velocity fields surrounding the breakwater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.