Abstract

Photonic generation of frequency-modulated continuous wave (FMCW) based on period-one (P1) oscillation of an optically injected semiconductor laser (OISL) is numerically investigated. A modulated optical injection can drive an OISL into P1 oscillation for generating an FMCW signal, and an optical feedback is further introduced to reduce the phase noise of the generated signal. The influences of operation parameters on the performance of the generated FMCW signal are discussed. The numerical results show that under proper operating conditions, a photonic FMCW signal with a sweep range of 12.41 GHz can be obtained. After adopting optical feedback, the frequency comb contrast can be increased to a level more than 30 dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.