Abstract

The present work examines the influence of magnetohydrodynamic field on natural convection phenomena inside a porous square enclosure with a pair of embedded hot circular cylinders. Numerical investigations are performed to understand the effects of interspacing distance between the embedded cylinders, Hartmann number, Rayleigh number and Darcy number on the thermal transport process and the total irreversibility generation. It is observed that the isotherm distribution is strongly affected by the presence of magnetic field although the distribution of streamlines remains independent of the strength of magnetic field. This underlines the fact that magnetic field strongly influences the heat transfer process and entropy generation characteristics. It reveals that the natural convection is suppressed in the presence of a higher magnetic field as evident from the reduction in Nusselt number. It is observed that an increase in the spacing between the cylinders increases the heat transfer rate, and moreover, the effect of the magnetic field on heat transfer is more pronounced at higher interspacing distance between the embedded cylinders. The heat transfer rate increases significantly with the increase in the permeability of the medium. The entropy generation rate is independent of the strength of applied magnetic field. Further, the contribution of the entropy generation owing to friction is found to be negligible in total irreversibility obtained at lower values of Rayleigh number irrespective of Darcy number. However, the contribution of irreversibility owing to heat transfer is found to be minimal at higher values of Rayleigh number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.