Abstract

Carrier transport characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (LEDs) are theoretically investigated. Simulation results reveal that hole transport/injection may be severely obstructed by the large potential barrier at the p- electron-blocking layer/p-GaN interface. Under this circumstance, the slope efficiency degrades and electron leakage increases accordingly. By inserting the AlGaN interlayers to form band-engineered staircase p-region, both the transport/injection of holes and $I$ – $V$ characteristic are improved. Moreover, the LED characteristics become less sensitive to the polarization field, which is beneficial for obtaining high LED performance with the LED of high crystalline quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.