Abstract

In order to investigate the steady heat transfer characteristics of a porous media solar tower receiver developed in China, this paper applies the steady heat and mass transfer models of the porous media to solar receivers, chooses the preferable volume convection heat transfer coefficient model, solves these equations by using the numerical method, and analyzes the typical influences of the porosity, average particle diameter, air inlet velocity, and thickness on the temperature distribution. The following conclusions have been drawn: in the same position or relative position along the downstream, the bigger the average particle diameter is, the higher the solid matrix dimensionless temperature is, the higher the air dimensionless temperature is. The bigger the porosity is, the lower the solid matrix dimensionless temperature is, the bigger the porosity is, the higher the air dimensionless temperature is. The bigger the thickness is, the lower the solid matrix dimensionless temperature is, the higher the air dimensionless temperature is. In a certain depth, the bigger the air inlet velocity is, the higher the solid matrix dimensionless temperature is. After a certain depth, the bigger the air inlet velocity is, the lower the solid matrix dimensionless temperature is, and the bigger the air inlet velocity is, the higher the air dimensionless temperature is. The paper can provide a reference for this type of receiver design and reconstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call