Abstract

The effects of methanol and oleic acid blended diesel fuel on the performance and emissions of the diesel engine are evaluated numerically by commercial software Diesel-RK to simulate a single cylinder, naturally aspirated, direct injection, four-stroke diesel engine. The present study also resolves the problem of the immiscibility of methanol in diesel fuel, as to avoid immiscible nature an optimum percentage of oleic acid and n-butanol is added to make blends stable. The methanol blended diesel fuels are 7%, 12%, and 17% methanol in volume basis (D85M7NB1O7, D75M12NB1O12, and D65M17NB1O17). A drastic reduction in NOx emission is observed due to low combustion temperature however the PM emissions increases which can be controlled by using exhaust after-treatment techniques. The results indicate that: the brake specific fuel consumption increases and brake thermal efficiency decreases with an increase of methanol, oleic acid and n-butanol contents in the blended fuel whereas maximum heat release rate increases and exhaust temperature decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.