Abstract
PurposeThe purpose of this paper is to study the operation performance of the high-speed ramjet kinetic energy projectile using solid fuel ramjet as power plant that is a new short-range and small caliber projectile.Design/methodology/approachThe numerical investigation on combustion characteristic of polyethylene in high-speed ramjet kinetic energy projectile is carried out in this paper. The flow characteristics’ differences are analyzed when ramjet works or do not work, and both the combustion characteristics and propulsive performance are analyzed when ramjet works.FindingsThe results show that with the increase of the abscissa x, the flame front is close to solid fuel surface at first and then keeps away from solid fuel surface. With the increase of the abscissa x, the temperature of solid fuel surface and regression rate of solid fuel continues to increase before re-attachment point and then decreases, which a maximum locate at the re-attachment point. Both the average temperature and the regression rate on the surface of the solid fuel tend to rise as the increase of inflow Mach number. As the inflow of Mach number increases, the mass flow rate of gaseous fuel increases.Practical implicationsThe research results can provide useful database for the subsequent research on high-speed ramjet kinetic energy projectile.Originality/valueThis paper studies the operation characteristics of the ramjet projectile, especially the effect of the change of the flight velocity on the performance of high-speed ramjet projectile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.