Abstract
This paper investigated hydrodynamic performance of the Ka4-70+No.19A ducted propeller astern of a vectored underwater robot at diverse deflection angles. Employing SSTk-ω turbulence model combined with moving reference frame technique, numerical computation of the ducted propeller in a fully developed turbulence behind hull was carried out. The validity of the model was verified by comparing the numerical results of open water performance and the experimental values. The hydrodynamic performance of the ducted propeller was worked out and discussed in detail. The wake flow and thrust deduction fraction corresponding to different deflection angles were analyzed. Results show that the ducted propeller generates more thrust and requires more torque at lager deflection angle. In addition, the thrust deduction fraction increases with the increase of the deflection angle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.