Abstract

In this paper, an electromagnetic-field FDTD method coupled with plasma fluid model is put forward to investigate the different physical phenomena of high power microwave (HPM) flashover and breakdown on inner and outer surface of output-window. Based on the above theoretical models, a one-dimensional (1D) electromagnetic field and plasma interaction code is programmed by authors. By using the code, the HPM flashover and breakdown on inner and outer surface of output-window are simulated. The numerical results could be concluded as follows. For flashover and breakdown on outer surface, output microwave pulse is shortened without cut-off; there is a standing-wave distribution of electric field RMS (Root-Mean-Square) value before the window with fixed-positions of wave nodes and antinodes; there is a ultra-high-density (~1021 m-3) and ultra-thin (~mm) plasma shell with slow diffusion, microwave could penetrate the plasma-shell partly; the shortening of output microwave is caused by plasma absorption mostly. The output pulse of microwave could be lengthened by reducing the initial density or depth of plasmas; the other way is to shorten incident microwave pulse or reduce the value of incident microwave power. For flashover and breakdown on inner surface, there is also a standing-wave distribution of electric field RMS value before the window but the positions of wave nodes and antinodes vary with time; the plasma region moves toward the microwave source; with strong-outgassing, output microwave pulse is shortened without cut-off, there are “thread-like” ultra-high-density (~ 1021 m-3) and ultra-thin (~mm) plasma regions with slow diffusion, the distance between two “thread-like” regions is about a quarter of microwave wavelength, the shortening of output microwave is caused by plasma absorption mostly; with weak-outgassing and low electric field value, the output pulse of microwave is lengthened but cut-off finally, there are “belt-like” high-density (~ 1018 m-3) and thin (mm-cm) plasma regions with fast diffusion, the distance between two “belt-like” region is about a quarter of microwave wavelength, the shortening of output microwave is caused by plasma absorption mostly; with weak-outgassing and high electric field value, output pulse of microwave is cut-off quickly, “block-like” diffuse ultra-high-density (~1021 m-3) and deep (~ cm) plasma regions are formed with very fast diffusion, and the shortening of output microwave is caused by plasma reflection mostly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.