Abstract

The failure behavior of metal materials under strong dynamic loading such as explosive and impact loading has important applications in the fields of defense industry and civil security. In this study, a novel coupled bidirectional weighted mapping method between Lagrange particles and Euler meshes is proposed to numerically simulate the dynamic response and failure process of steel structure under explosive loading. In this method, the Lagrange particles and Euler meshes are used to describe the materials that need to be accurately tracked and can more accurately characterize the deformation history and failure process of the material. A comparison between the numerical results and experimental data shows that this method can be used to solve large deformation problem of multi-medium materials and the failure problems of complex structures under strong impact loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call