Abstract

The mechanism of transpiration cooling with liquid phase change is numerically investigated to protect the thermal structure exposed to extremely high heat flux. According to the results of theoretical analysis, there is a lower critical and an upper critical external heat flux corresponding a certain coolant mass flow rate, between the two critical values, the phase change of liquid coolant occurs within porous structure. A strongly applicable self-edit program is developed to solve the states of fluid flow and heat transfer probably occurring during the phase change procedure. The distributions of temperature and saturation in these states are presented. The variations of the thickness of two-phase region and the pressure including capillary are analyzed, and capillary pressure is found to be the main factor causing pressure change. From the relationships between the external heat flux and coolant mass flow rate obtained at different cooling cases, an approach is given to estimate the maximal heat flux afforded and the minimal coolant consumption required by the desired case of transpiration cooling. Thus the pressure and coolant consumption required in a certain thermal circumstance can be determined, which are important in the practical application of transpiration cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call