Abstract

Aiming to further improve the thermal efficiency and reduce NOx emissions in the stoichiometric hydrogen-enriched natural gas (NG) engine, a detailed 3-D simulation model of stoichiometric operation heavy-duty NG engine is built based on the actual boundary conditions from high load bench test. The superimposed methods for knock regulation, combustion and emission control, including Miller valve timing, hydrogen volume fraction and EGR rate were proposed and investigated comprehensively. It reveals that the typically bimodal characteristic of heat release rate (HRR) curve is caused by knock, which seriously restricts the performance improvement of stoichiometric NG engine under high load condition. To predict and control the occurrence of the second peak of HHR accurately, a new parameter BI is defined. Moreover, the Miller timing with 20°CA of the intake valve late closing shows better combustion performance within the knock limit, accompanied by a slight increase in NOx emissions. Additionally, the 5% hydrogen blend, coupled with the Miller cycle, can further enhance the indicated thermal efficiency (ITE) of the NG engine due to the stronger effects on acceleration of laminar flame propagation velocity than the promotion of end-gas auto-ignition. Besides, the great potential of EGR rate for balancing NOx and ITE is also confirmed in the heavy-duty hydrogen-enriched NG engine adopting Miller cycle. Compared to the original indexes, combing with the regulation strategies of intake valve late closing (20°CA), hydrogen addition (5%) and EGR (17%) are proved to increase the indicated thermal efficiency by 1.89% and reduce NOx emissions by 11.47% within the knock limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.