Abstract

In the present study, we preformed a two-dimensional numerical simulation of the motion and coalescence of bubble pairs rising in the stationary liquid pool, using the moving particle semi-implicit (MPS) method. Moving particles were used to describe the liquid phase and the vapor phase was evaluated using real vapor sate equation. The bubble–liquid interface was set to be a free surface boundary which could be captured according to the motion and location of interfacial particles. The behaviors of coalescence between two identical bubbles predicted by the MPS method were in good agreement with the experimental results reported in the literature. Numerical results indicated that the rising velocity of the trailing bubble was larger than that of the leading bubble. Both of the leading bubble and the trailing bubble rose faster than the isolated bubble. After coalescence, the coalesced bubble showed velocity and volume oscillations. The time of the volume oscillations increased with increasing initial bubble diameter. The wake flow and vortex would form behind the coalesced bubble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.