Abstract

In order to improve the cavitation performance of the self-excited oscillation nozzle (SEON), a novel SEON with a circular arc curve chamber was designed by changing the chamber wall profile of the SEON. The performance of the circular arc curve chamber SEON was studied numerically. Taking the vapor volume distribution and the vapor volume fraction as the evaluation indexes, the influences of the chamber wall profile on the cavitation performance of the circular arc curve chamber SEON were analyzed. In addition, it was compared with the broken-line chamber SEON. The numerical results show that the cavitation performance of the circular arc curve chamber SEON is first enhanced and then weakened by increasing the circular arc radius. The circular arc curve chamber structure can form a larger central cavitation volume in the nozzle, which improves the cavitation performance of the SEON. When the circular arc radius is 2 mm, the cavitation area and the turbulent kinetic energy of the circular arc curve chamber SEON increase by 122.5% and 16.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call