Abstract

Heavy-liquid metals, such as lead and lead–bismuth eutectic, are promising candidates as coolant for advanced GEN-IV fast reactors as well as for Accelerator-Driven Systems. The advancing knowledge of the thermal-hydraulic behavior of these fluids leads to explore new geometries and new concepts aimed at optimizing the key components of a GEN-IV reactor for these fluids. In this paper, a theoretical and computational analysis is presented of a jet pump evolving liquid lead as primary pump for ALFRED (Advanced Lead Fast Reactor European Demonstrator). The jet pump is modeled with a 3D CFD code (FLUENT) and at design operating conditions. The analysis shows that a jet pump could be a viable solution for ALFRED (at least from a thermal-hydraulic point of view), albeit some technological issues remain to be fully addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.