Abstract

A slurry diffusion model of a single random-roughness fissure is established to consider the slurry and geological fracture coupling based on the Navier-Stokes equation. The slurry flow characteristics and coupling response in a rough fracture are investigated. The influencing mechanism of roughness on the slurry flow was revealed. The calculation model of effective aperture is determined in a rough fracture. The shear displacement effects on the slurry flow are studied. The results show that this slurry diffusion model can more accurately reflect the grouting. A rougher fracture has a great effect on the flow because of the larger low-speed domains. The pressure gradient and maximum diffusion velocity increase parabolically with changes in the relative roughness. The conventional flat-panel model can cause an increasing deviation rate for determination of grouting parameters. The coupling degree distribution is temporal with spatial variations, and increases with the time-dependent viscosity, roughness (decreasing effective aperture), and a shortening path. The viscosity is the key controlling factor in grouting pressure. The roughness response after shear displacement is more significant, further revealing that on-site grout splitting often occurs at the narrow undulating tip with high viscosity and shear on a rough flow surface. The rough fracture model considering fluid-solid coupling is more consistent with the grouting phenomenon in engineering. And the roughness and shear are the key geological factors of grout splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call