Abstract
AbstractTurbines in wind farms are subject to complex mutual aerodynamic interactions, which in detail depend upon the characteristics of the atmospheric boundary layer. Our two objectives with this paper were to investigate the impact of directionally sheared inflow on the wake development behind a single wind turbine and to analyse the impact of the wakes on the energy yield and loading of a downstream turbine, which is exposed to partial and full wake conditions. We performed simulations with a framework based on a coupled approach of large‐eddy simulation and an actuator line representation of an aeroelastic turbine model. Our results show that directionally sheared inflow leads to a non‐symmetrical wake development, which transfers to distinct differences in the energy yield and loading of downstream turbines of equal lateral offsets in opposite direction. Therefore, the assumption of wakes being axisymmetrical could lead to notable deviations in the prediction of wake behaviour and their impact on downstream turbines for atmospheric inflow conditions, which include directional shear. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.