Abstract

ABSTRACTIn this paper, wave transformation over a submerged reef has been numerically studied based on the OpenFOAM model. This numerical model solves the Reynolds-Averaged Navier-Stokes equations for two-phase flow and employs the volume of fluids (VOF) method for the free surface. The k-ω SST turbulence model is used to simulate wave breaking, and the wave generation library waves2Foam is adopted to generate waves in the model. The numerical model is first validated against the physical experimental data, and it is shown that the model is capable of simulating the key processes of wave shoaling, breaking and transmission over the submerged reef. Then, a series of numerical tests are conducted considering different incident wave heights, submergences and slopes of the reef. The influences of reef slope and submergence on the wave properties over the reef are discussed, which include the wave reflection and transmission coefficients, breaking wave height, wave-induced setup, and energy dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.