Abstract

Critical heat flux has been recognized as the upper limit for the safe operation of many cooling systems which may lead to the occurrence of dryout causing a large temperature gradient in the heated wall. One way to increase the amount of the critical heat flux is to put in nanoparticles such as Al2O3 to the base fluid. The current research investigates the nanoparticles effect on dryout phenomenon using computational fluid dynamics. Boiling phenomena are simulated using the mechanistic model organized in Rensselaer Polytechnic Institute which is extended to analyze the critical heat flux by partitioning wall heat flux to liquid and vapor phases. It was shown that the dryout phenomenon can be delayed by increasing the nanoparticles concentration, and in certain concentration of nanoparticles (5 percent), dryout would not take place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.