Abstract
In this paper the dynamic response and fatigue analysis of a marine SCR (Steel Catenary Riser) due to vortex shedding is numerically investigated. The riser is divided in two-dimensional sections along the riser length. The discrete vortex method (DVM) is employed for the assessment of the hydrodynamic forces acting on these two-dimensional sections. The hydrodynamic sections are solved independently, and the coupling among the sections is taken into account by the solution of the structure in the time domain by the finite element method implemented in ANFLEX code [1]. Parallel processing is employed to improve the performance of the method. A master-slave approach via MPI (Message Passing Interface) is used to exploit the parallelism of the present code. The riser sections are equally divided among the nodes of the cluster. Each node solves the hydrodynamic sections assigned to it. The forces acting on the sections are then passed to the master processor, which is responsible for the calculation of the displacement of the whole structure. The time histories of stress are employed to evaluate the damage as well as the life expectancy of the structure by the rainflow method to count the cycles in the dynamic response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.