Abstract

The nonlinear processes of development of instability in an unsteady subsonic viscous gas flow in a plane channel with a sudden expansion are investigated numerically with allowance for acoustico-vortex interaction over a broad interval of the characteristic parameters. Effects associated with the acoustic self-excitation of the jet flowing into the wider part of the channel are determined. Approximate relations are obtained for the resonance conditions of self-excitation. The effect of the inlet mean-velocity profiles on the evolution of the flow is estimated. The processes of formation and subsequent interaction of the coherent structures are analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call