Abstract

This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity. A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress. Based on the Eulerian-Eulerian two-fluid modeling framework, a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region. Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements. The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect. The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction. As the bubbles develop downstream, the coleascense and breakup rate gradually reach balance, resulting in the stable bubble diameter. A close examination of the flow structures, gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call