Abstract

This study deals with numerical analysis of fault slip behaviour within deep faulted geothermal reservoirs during injection and pro- duction of fluid. A coupled approach for thermo-hydro-mechanical process modelling is used to describe and quantify the effects of thermoelastic stress on the slip tendency. The results show that the slip tendency of a fault can increase when the cold fluid front reaches the fault due to thermal stress enhancement. Magnitudes of increase in slip tendency depend on the injection temperature and the dip angle of the fault, and under specific configurations, may lead to a reactivation of the fault.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.