Abstract

The Engineering design of divertor is one of the most important topics in nuclear fusion research. The primary problem in the design of divertor is to discharge the large amount of energy from high-energy plasma particles to ensure that the operation of fusion devices can be safe and stable for a long time. Based on the temperature of the divertor target plate measured in a discharge of the EAST experimental device, we carry out numerical simulations to examine the thermal and hydraulic performance of the Monoblock module. The ANSYS software is used for the simulations on the fluid-solid coupling phenomenon of a simplified model. The ANSYS parallel module and 30 CPUs are used for parallel computing, and periodic temperature pulses are loaded on the top surface of a tungsten divertor tile to investigate the thermo-hydraulic characteristics of Monoblock module. We find the pattern in which the distributions of temperature and heat flux change over time. The maximum temperature mainly depends on the peak heat flux of high-energy particles and the duration of pulses, The temperature of the interface of each component and of coolant outlet are all related to the density of discharge pulse and the duration of discharge, and the temperature of the interface of each component will reach to an equilibrium under the condition of stable discharge heat flow. The results provide support for the structural design of a stable EAST divertor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.