Abstract
AbstractThe present paper provides a thorough numerical study of variation in geometrical parameters that affect the performance of the novel finned‐tube type heat exchanger design. The finite volume method was employed to discretize and solve the governing partial differential equations of heat conduction. A wide range of constant convective heat transfer coefficient (5 < h < 200 W/m2 K) is chosen to reduce the computational time and power, which covers thermal applications of latent thermal energy storage, refrigeration & air‐conditioning, etc. The effects of the ratio of fin spacing of fins to the outer diameter of the tube (0.1 ≤ δ* ≤ 8), the material of fins (copper and stainless steel) and the ratio of fin thickness to the outer diameter of the tube (0.0333 ≤ t* ≤ 0.4) on the performance parameters namely efficiency (η) and effectiveness (ε) of the fins were studied. Temperature contours for a wide range of geometries were depicted. The maximum effectiveness of copper fins is 304.62, whereas that for steel fin is 219.33 with the optimum dimensionless fin thickness reported to be t* = 0.1666. Furthermore, the maximum overall efficiencies of fins were 99.98% and 99.62% for copper and steel fins, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.