Abstract

A numerical study has been conducted to clarify flow and heat transfer characteristics around circular, cam, and drop-shaped tubes using the software package ANSYS FLUENT. Reynolds number Re based on equivalent circular tube is varied in range of (8.1--19.2)·103. All tube shapes are investigated under similar operating conditions. Local heat transfer, pressure and friction coefficients over a surface of the tubes were presented. Obtained results agree well with those available in the literature. Correlations of the average Nusselt number Nuav and a friction factor f in terms of Reynolds number for the studied tubes were proposed. The results indicated that Nuav increases with increasing Re. In the contrary, f decreases as Re increases. Thermal-hydraulic performance is used to estimate the efficiency of the cam and drop-shaped tubes. Results show that the drop-shaped tube has the best thermal-hydraulic performance, which is about 1.6 and 2.5 times higher than that of the cam-shaped and circular tube, respectively

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call