Abstract

The Eulerian Wall Film (EWF) model is a mathematical model employed to analyze the behavior of fluid films on a surface. The model has been widely adopted in various engineering applications due to its accuracy and efficiency. However, it is rarely applied in the aerospace field. The solution of the water-drop impact constitutes an indispensable prerequisite for the computation of ice accretion on the exterior of aircraft wings. In this study, we propose a novel approach for the estimation of water-drop impact on wing surfaces by integrating the Euler–Euler approach and EWF model. This approach is capable of furnishing a point of reference and a theoretical foundation for prospective water-drop impact experiments. Through comparison with pertinent experimental findings, the precision of the numerical simulation approach utilized in this paper is substantiated. Specifically, the research object is the NACA653-218 airfoil of the C-919 transport aircraft, for which the aerodynamic properties, water-drop collision, and liquid film flow characteristics during steady flight were simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.