Abstract

The propulsive wing is a new concept wing of automatic propulsion with high lift coefficients and has great application value in plant protection and forest fire control. The propulsive wing wake is a reverse Bénard–von Kármán (RBvK) vortex street, which is considered a thrust-generating wake. The wake structure will change greatly at high angles of attack and lead to changes in the aerodynamic performance of the propulsive wing. To explore the optimal working range and the wake characteristics of the propulsive wing, the wake transition and aerodynamic efficiency of the propulsive wing in cruise are numerically studied. The results indicate that there are three types of structures for the propulsive wing wake. When α ≤ 20°, the wake transits from the RBvK vortex street to the critical state with the increase in cruise speed, and the Strouhal number approaches 1.9. The critical wake region decreases gradually with the increase in the angle of attack. The maximum propulsive efficiency is 0.17 at a cruise speed of 15 m/s. When α > 20°, the wake transits directly from the RBvK vortex street to the Bénard–von Kármán (BvK) vortex street and the Strouhal number approaches 0.34. The maximum propulsive efficiency appears at a cruise speed of 10 m/s, which is close to the BvK vortex street boundary. Before entering the stall state, the lift efficiency of the propulsive wing increases with the increase in cruise speed and angle of attack, up to 3–5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call