Abstract

A two-dimensional axis-symmetric numerical model was solved to investigate the effect of four turbulence models on combustion characteristics, such as the velocity, the pressure, the turbulent kinetic energy and the dissipation rate in a methane-air no-premixed flame. Based on the commercial CFD code Ansys fluent 17.0, different turbulence models including the standard k-e model, the RNG k-e model, the realizable k-e model and the standard k-ω model were used to simulate the flow field in a simple burner. The eddy dissipation model with the global reaction schema was applied to model the turbulence reaction interaction in the flame region. A finite volume approach was used to solve the Navier-Stokes equations with the combustion model. Particularly, the effect of these turbulence models on the combustion characteristics was analyzed. The numerical predictions were validated by comparison with anterior experimental results. Moreover, the predicted axial and radial gradients of velocity in the standard k-e are overall agreement with literature results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.