Abstract
In this paper, a discrete dynamical system (DDS) is derived from the generalized Navier–Stokes equations for incompressible flow in porous media via a Galerkin procedure. The main difference from the previously studied poor man’s Navier–Stokes equations is the addition of forcing terms accounting for linear and nonlinear drag forces of the medium — Darcy and Forchheimer terms. A detailed numerical investigation focusing on the bifurcation parameters due to these additional terms is provided in the form of regime maps, time series, power spectra, phase portraits and basins of attraction, which indicate system behaviors in agreement with expected physical fluid flow through porous media. As concluded from the previous studies, this DDS can be employed in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent flow through porous media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.