Abstract

AbstractNumerical investigation of the plasma processes in a cylindrical chamber with small dimensions of a novel microwave electrothermal plasma thruster for nanosatellites has been conducted. The absorbed microwave power from the electrons in the plasma column of the surface wave discharge is included in the computational model as a heat source with Gaussian distribution. The computational model takes into account the elastic and inelastic collisions of the electrons with the atoms in the ground state and two excited states (−s, −p) and the processes of recombination and deactivation of the plasma species in the volume and on the walls of the chamber. The computational model includes the flow of neutral gas and the processes in the plasma for effective heating of neutral particles by collisions not only with electrons but also with ions. Selected combinations of input power and propellant mass flow rates are used as initial parameters for the numerical investigation. The results show that at higher mass flow rates the heating of the neutral gas is more effective and at power levels of 4 W and propellant mass flow rate of 3 mg/s the electrothermal plasma thruster demonstrates effective performance and thrust levels in the order of 1 mN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call