Abstract

This research paper investigates the numerical solutions of the nonlinear fractional Ostrovsky equation through five recent numerical schemes (Adomian decomposition (AD), El Kalla (EK), Cubic B-Spline (CBS), extended Cubic B-Spline (ECBS), exponential Cubic B-Spline (ExCBS) schemes). We investigate the obtained computational solutions via the generalized Jacobi elliptical functional (JEF) and modified Khater (MK) methods. This model is considered as a mathematical modification model of the Korteweg–de Vries (KdV) equation with respect to the effects of background rotation. The solitary solutions of the well-known mathematical model (KdV equation) usually decay and are replaced by radiating inertia gravity waves. The obtained solitary solutions show the localized wave packet as a persistent and dominant feature. The accuracy of the obtained numerical solutions is investigated by calculating the absolute error between the exact and numerical solutions. Many sketches are given to illustrate the matching between the exact and numerical solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.