Abstract

ABSTRACTThis paper examines forced convection heat transfer and entropy generation of a nanofluid laminar flow through a horizontal channel with wavy walls in the presence of magnetic field, numerically. The Newtonian nanofluid is composed of water as base fluid and Al2O3 as nanoparticle which is exposed to a transverse magnetic field with uniform strength. The inlet nanofluid with higher temperature enters the cool duct and heat is exchanged along the walls of a wavy channel. The effects of the dominant parameters including Reynolds number, solid volume fraction, Hartmann number, and different states of amplitude sine waves are studied on the local and average Nusselt number, skin friction, and total entropy generation. Computations show excellent agreement of the present study with the previous literature. The computations indicate that with the increasing strength of a magnetic field, Nusselt number, skin friction, and total entropy generation are increased. It is found that increasing the solid volume fraction of nanoparticles will increase the Nusselt number and total entropy generation, but its effect on the skin friction is negligible. Also, results imply that increasing amplitude sine waves of the geometry has incremental effect on both Nusselt number and skin friction, but its effect on the total entropy generation is not so tangible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.