Abstract

Phase-field simulations of the martensitic transformation (MT) in an austenitic matrix which has already undergone the plastic deformation are carried out. For this purpose the elasto-plastic phase-field approach of incoherent MT developed in a previous work [Kundin et al., 2011. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 59, 2082–2012] is used. The evolution equation for the dislocation density field is extended by taking into account the thermal and athermal annihilation of the dislocations in the austenitic matrix and the athermal annihilation at the transformation front. It is shown that the plastic deformation in the austenite caused by the MT interacts with the dislocation field and the MT front that leads to an inhomogeneous increasing of the total dislocation density. During the phase transformation one part of the dislocations in the austenite is inherited by the martensitic phase and this inheritance depends on the kinetics and the crystallography of MT. Another part of dislocations annihilates at the transformation front and decreases the dislocation density in the growing martensite. Based on the simulation results the specific type of phenomenological dependency between the inherited dislocations, the martensite phase fraction and the plastic deformation is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.